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The irreducible characters of a finite group are determined uniquely by those 
of a minimal set of maximal subgroups. The method is based on the construc- 
tion of all class functions which are irreducible characters on every maximal 
subgroup. These are generalized characters by a theorem of Brauer, so that 
the irreducible characters are obtained by checking the norm. An alternative 
characterization of irreducible characters, the Maximum Mixing Rule, works 
for all point symmetry groups, and its physical significance is discussed. As 
an example, the character tables for all point symmetry groups and crystal 
double-groups are constructed in this way. 
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1. Introduction 

Character tables are a major tool in the application of group theory to physics 
[1-8] and chemistry [9-11]. Their construction is based on various results of 
group representation theory [12-15]. For example, a character table can be built 
[16] using the knowledge of the structure coefficients of the class algebra, with 
the help of the orthogonality theorems, by reduction of characters obtained by 
different ways (e.g. induction), and other methods. 

The "Method of Descending Symmetry" is quite popular in the physical literature 
[4, 9, 10]. It describes the splitting of levels due to a symmetry-reducing distortion, 
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by reduction of  the representation subduced on a subgroup. Here we consider 
the inverse process of "Ascending Symmetry". We show that a character table 
of  a finite group G is uniquely determined from the character tables of its 
(maximal) subgroups. This is done on two levels. On a rigorous mathematical 
level (Sect. 2) the result follows from a theorem by Brauer. On a more heuristic 
level, we suggest (Sect. 3) a "Maximum Mixing Rule" for determining the 
irreducible characters of  (3. It shows that character tables are constructed in a 
way that ensures a maximal removal of degeneracy when descending in symmetry. 

The above mentioned results lead to a new method for constructing character 
tables, which we call the "Ascending Symmetry" or "Composi t ion" method. It 
is demonstrated for all point symmetry groups (Sect. 4) and crystal double-groups 
(Sect. 5). Group theoretic notions used in the sequel are defined in Appendix A. 

2. Theory 

In the following presentation we restrict attention to nonabelian groups. This is 
due to the fact [17] that any abelian group is a direct product of cyclic groups 
(whose orders are powers of primes). Its character table is obtained by a direct 
multiplication of the tables for its cyclic components. The irreducible representa- 
tions of a cyclic group of order n are the n powers of (e ~ e l , . . . ,  e "-1) where 
e = exp (2r is the nth root of unity. 

Our aim is to show, loosely speaking, that if the character tables for (proper) 
maximal subgroups Mi of  a finite (nonabelian) group G are given together with 
the fusion of the conjugacy classes of the Mi into those of G (i.e., one is told 
which classes of Mi are contained in a given class of G), it is possible to determine 
uniquely the character table of G. First we introduce a 

Definition (E-cover) 

H m An elementary cover of a finite group G is a set of subgroups { ~}~=1 so that 

(a) Each conjugacy class of  G has a representative in one of the H~'s. 

(b) Each conjugacy class of elementary subgroups E _ G has a representative 
contained in one of the Hi's. 

Note that when G is elementary, {G} is an E-cover (and every E-cover contains 
G). When G is non-elementary, it always has a proper E-cover (i.e. all H~'s are 
proper subgroups), for example the set of all elementary subgroups (every element 
in G belongs to an elementary subgroup, e.g. the cyclic subgroup generated by 
it). In this case, the E-cover does not necessarily cover G, but the set of all 
conjugates of the Hi's does. 

The above definition is inspired by a theorem [13-15], which is seldom mentioned 
in the physical literature [ 1-11 ]. 

Theorem (Brauer). A class function of  a finite group G is a generalized character 
if  and only if  it is a generalized character when subdued (restricted) to every 
elementary subgroup E ~ G. 
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With the help of the above we can prove the following 

Corollary. The composition method for determining irreducible characters. 

The character table of  a finite non-elementary group G is uniquely determined by 
( a) The character tables of  the (proper) subgroups Hi in an E-cover; ( b ) The rule 
for fusing the classes of  Hi into those of  G. 

Proof. Let us denote the set of all irreducible characters of G by Irr (G). If  
X~ I r r ( G ) ,  we denote by v the dimension (degree) of X, i.e. v = x ( e ) ,  where 
e ~ G is the identity element. Our proof  is also a description of the procedure 
for obtaining all X E Irr (G). 

First we note that if two of the subgroups are conjugate, they are isomorphic 
and have the same character table and fusion rules. We therefore assume, without 
loss of generality, that all H/'s are representatives of distinct conjugacy classes 
of subgroups. 

For a given dimension 1, we construct all class functions {q~} of G so that 

(a) 4,(e) = v, and 

(b) The restriction of ~b to every Hi is a (possibly reducible) character of Hi. 

This can be done in the following manner: For H 1 take all N-linear combinations 
Y~ k alk~lk (i.e., alk are positive integers), of  ~Plk E Irr (//1), so that rule (i) is obeyed: 

Rule (i). If  h i ,  h2 , . . .  C Hi are representative of different conjugacy classes of Hi, 
but belong to the same class of G, then 

aikOik( h~) = E a,kO,k( h2) . . . .  (1) 
k k 

For HE and any of the above-constructed N-linear combinations, take all N-linear 
combinations ~k a2kO2k, O2k ~ Irr (H2), so that both Rules (i) and (ii) are obeyed: 

Rule (ii). If  hi ~ Hi and hj ~ ~ are conjugate in G, then 

Y'. aiktPik( hl) = E ajktPjk( hj) (2) 
k k 

In particular, Y'k aikOik(e) = V for all L 

Continuing in this fashion for i = 1 . . . .  , m we generate all class functions ~b (the 
two rules ensure that ~b is indeed a class function) that are (by construction) 
characters for all Hi. We now observe that: 

(a) Since a representation of a group G is also a representation when restricted 
to any subgroup of G, it follows that every X ~ Irr (G),  x(e)  = v, is one of the th's. 

(b) By Brauer's theorem all the ~b's are generalized characters. We can therefore 
apply the criterion for irreducibility 

Y. I (g)l=>-IGI (3) 
g'~G 

where IG I denotes the order of G, and equality holds if and only if ~b ~ Irr (G). 
Note that if ~b(e)= 1, [~b(g)l 2= 1 for all g~  G by construction, therefore ~b is 
guaranteed to be an irreducible character. 
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The procedure described above ensures that we have obtained all irreducible 
characters of  G with dimension v. I f  we start the procedure with v = 1, increasing 
v by one at each stage, and terminate when the number  of  irreducible characters 
obtained equals the number  of  conjugacy classes, we would have a unique 
determination of the character table for G. Q.E.D. 

The only case not covered by the above corollary is that of  a nonabelian p-group 
(an example are dihedral groups of order 2 k, k-> 3, see Sect. 4). We would like 
to determine its character table by the composition method using only its proper 
E-cover. For the one-dimensional (linear) class functions Brauer's theorem is 
clearly wrong if only proper  E-groups are considered. In this case composition 
may give class functions which are not generalized characters. These could not 
be filtered out by Eq. (3) alone (but we could try orthogonality with the trivial 
representation, consistency with the group's  multiplication table, etc.). For class 
functions of  dimension v _> 2 Brauer's conclusion is still true for the few cases 
we have checked. 

Although the composit ion procedure works for any E-cover, it is natural to ask 
when would it be "most  efficient". On the one hand we would like the E-cover  
to contain as many (conjugacy classes of) subgroups as possible: Additional 
subgroups may add restrictions via Rules (i) and (ii) and decrease the number  
of  class functions ~b to be considered. On the other hand, we prefer to deal with 
as few character tables as possible. These (seemingly contradictory) demands 
motivate the following 

Definition (ME-cover) 

A ME-cover  is a minimal elementary cover of  maximal subgroups, M~ c G. 

It is clear that a ME-cover  contains at most one representative from each 
conjugacy class of  maximal subgroups. It need not contain all such representa- 
tives: I f  every elementary subgroup E c Mj is already contained in one of the 
M~, i ~ j ,  there would be a ME-cover  which does not include Mj. In applications 
(Sect. 4) we always use the character tables of  a ME-cover.  

Additional rules 

We list some additional "rules" to the two rules in the corollary. Their use is 
either optional or restricted to special cases. In the following we assume that 
H c G is in the E-cover under consideration. 

Rule (iii). Every ~b c Irr ( H )  appears as a constituent of  some X c Irr (G).  This 
could be proven either from Frobenius'  reciprocity relation [15] or by restriction 
of the regular character of  G. This rule may help in eliminating some of the class 
functions towards the end of our procedure. 

Rule (iv). A class function ~b determined at the vth stage of our algorithm, should 
not be a N-linear combination of X s Irr (G)  obtained at the previous v - 1 stages. 
This rule can be used instead of Eq. (3) to eliminate the reducible characters. 
(We would still need to use Eq. (3) for the "truly generalized" characters, which 



Ascending symmetry for irreducible characters 207 

have at least one negative integer coefficient ak in the combination Y'k aZ~k, 
Xk E Irr (G).) 

Rule (v). If  H <~ G (H is a normal subgroup), then by Clifford's theorem [13-15] 
the tPk E Irr (H) with coefficients ak ~ 0 (cf. Eqs. (1) and (2)), are conjugates in 
G. They all have the same dimension ~bk(e), which must therefore be a divisor 
of u. 

Rule (vi). If the subclass algebra with respect to Hi is commutative, G is simply 
reducible with respect to Hi, i.e. all the aik'S are  zero or unity [18]. 

Rule (vii). If  we seek only the faithful irreducible characters of G, then 

(a) We can start the procedure from u = 2: All one-dimensional (linear) characters 
for I G [ -  3 are non-faithful. 

(b) For each subgroup Hi, the intersection of the kernels of all ~,bik (whose aik ~ 0, 
cf. Eqs. (1) and (2)) must equal the identity. 

We mention this last "rule" since it is possible to obtain the non-faithful X c Irr (G) 
from the irreducible characters of the factor groups G / N ,  where N is a minimal 
normal subgroup of G. For completeness, we review this method in Appendix B. 

3. The maximum mixing rule 

We have used so far mainly condition (3) to "filter out" the irreducible characters. 
It is possible to suggest another "characterization of irreducible characters" that 
we call the Maximum Mixing Rule (MMR). It holds for all point symmetry 
groups and some other finite groups. At present we do not know whether it is 
valid for arbitrary finite groups. We mention the MMR because it seems to have 
an interesting physical significance. 

Let {th} be the set of all u-dimensional generalized characters of a group G, 
(u > 1 if G is elementary) that are characters on every (proper) subgroup H in 
an E-cover (see Sect. 2). When subdued (restricted) to H (denoted ~bn) one has 
~)H = ~k akt~k' ~k E Irr (H),  C/k integer. Define a class functional on a = ( a l ,  a2 , . . . )  
by 

f n ( a )  = E a2 (4) 
k 

then the MMR states that only the qS's for which fH(a)  is minimal will be 
irreducible characters. 

The function f is a measure of the "mixing" of the "states" (1, 2 , . . . ) .  Hence it 
is an "entropy function" (it is actually a R6nyi entropy of order 2) [19]. For 
example, if ~bH = ~1+ ~b2 and ~b~ =2~1 then thH is more mixed, therefore 4' 
Irr (G) while ~b'~ Irr (G). 

The physical significance of subduction on a subgroup is that it describes the 
reduction in symmetry caused by some perturbation [4]. Excluding "accidental" 
degeneracies, all eigenfunctions belonging to a given quantum level form the 
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basis for an irreducible representation of the system's symmetry group. Hence, 
loosely speaking, the MMR states that upon applying a perturbation, these 
degenerate states split to the largest extent possible. This also means that the 
total entropy of  the system never decreases after applying a perturbation, which 
therefore gives rise to an irreversible process [20]. Consistent with all the irreduc- 
ible representations of  its subgroups, the irreducible representations of a physical 
group are "chosen" in a way that ensures the irreversibility of all natural processes. 

4. Irreducible characters of point symmetry groups 

A point symmetry group can be defined as a finite group which has a real faithful 
representation of dimension u - 3 (they are all subgroups of  the three-dimensional 
orthogonal matrice groups). Physics textbook [1-11] usually classify them by 
their symmetry elements. Hence one has groups of  types C,,, S,,, 19,, C,,h, C,,,,, 
Dnh , Dnd , T, Th, red, O, Oh, I and Ih. (This is Schoenflies' notation [10]. Also 
given in Table 1 is the notation of some mathematical textbooks [17].) Since 
many of these are isomorphic or direct products, it is helpful to classify them by 
order, listing together all isomorphic groups [21]. This is done in Table 1. All 
abelian groups are either cyclic (whose order is a power of a prime), or a direct 
product of such groups with a cyclic group of order 2. Some of the nonabelian 
groups are also obtained as direct products with C2. For all nonabelian groups 
we list the conjugacy classes in a way that makes the isomorphism evident. Group 
elements are denoted by lower case symbols according to the symmetry operation 
they represent: e -  identity; cn - n fold rotation; o- - reflection; s, - n fold rota- 
tion-reflection; / - invers ion .  A notation [10] such as 8c3 means that the class 
contains eight c3 elements. Let us recall that the size of a conjugacy class is the 
index of  its centralizer. For example, the centralizer of  a c3 element in O is C3, 
hence there are Iol/tc31 = 8 elements in its class. 

The conclusion from Table 1 is that only the pure rotational groups C,, D,,  T, 
O and I need be considered. The subgroup structure of  these groups is shown 
in Table 2, in the form of subgroup chains, where all proper subgroups are 
ordered by strict inclusion. These chains begin with a maximal subgroup, they 
may or may not branch, and they end in a cyclic group. Only nonisomorphic 
chains are shown. Normal subgroups (with respect to the main group) are 
indicated. These are the subgroups that are unions of conjugacy classes. Commu- 
tator subgroups are encircled. See Appendix B for further discussion of the 
commutator subgroup. 

Table 3 gives character tables for some of  the cyclic groups. These are the basic 
"building blocks" for all other character tables, shown in Tables 4 and 5. In these 
tables the irreducible representations are denoted by the Mulliken symbols 
(A, B - one-dimensional, E - two dimensional and T denotes a three dimensional 
representation [10]). A dashed line separates faithful (below the line) from 
non-faithful characters. 

Tables 4 and 5 also contain the following additional information (compare [22]): 

(a) The center Z, which is the subgroup formed by all classes of single elements. 
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Table 1. Classification of point symmetry groups by order. ~ and [ denote isomorphism; 
x, direct product. For orders 48-120, the list does not include the nonisomorphic abelian 
groups 

Direct 
product Mathematical 

Order Point symmetry group structure symbols [17] 

1 C~ Z~ 
2 c~-c~-c~ z:-s2 
3 c3 Z 3 ~ A 3  
4 a) C4~Sg  Z,, 

b) FD2={e, c2, c~,c~} C 2 x C  2 V 
| c~h = {e, c~, ~h, i} 
L C=o ={e, c2, o-~, 00"} 

5 c~ Z5 
6 a) C6~$6~C3h C3>(C 2 Z 6 

b) fo, = {e, 2c3,3c2} S 3 
LC3o" ={e, 2c~, 3o'~} 

7 C 7 Z 7 
8 a) C s ~ S  8 

b) C4h C4x C 2 Z 8 
c) D2h D2• C 2 
d) [ D 4 = {e, 2c4, C2, 2C2, 2C~} D 4 

/ c4o = {e, 2C4, C2, 20~ 
L D2a = {e, 2s4, c2, 2c~, 200a} 

10 a) Clo ~ S10 ~ Csh C s x C 2 Zl0 
b) rDs = {e, 2cs, 2c~, 5c2} D 5 

Lcs~ = {e, 2cs, 2c 2, 500~} 
12 a) C12 ~ S12 C 4 x C 3 Z12 

b) C~h C6xC  2 
c) [D6={e ,  2e6,2c3,c2,3c'2,3c~} D 3 X C  2 0 6 

] I D3 h = {e, 283,2c3, O'h, 3C2, 3ao} 
/ C6~-- {e, 2c6, 2c3, c2,300~, 300d} 
LD3d = {e, 2s6, 2c3, i, 3c2,300d} 

d) . T={e ,  4c3,4c 2, 3c2} A4 
16 a) C16~$16 Z16 

b) Csh C s x C  2 
C) D4h D 4 x C  2 
d) rDs = {e, 2c8, 2c4, 2c~, c2, 4c~, 4c~} D 8 

[Cso = {e, 2c8, 2c,,, 2c 3, c2,400,. 400a} 
LD4a = {e, 2s8, 2c4, 2s~, c2, 4c;, 400a} 

24 a) C24- S24 (;8 x C3 Z24 
b) C12h C12 x C 2 
C) D6h D6•  2 
d) T h T x  C 2 
e) Dl2 ~ C12. ~ D6d D~2 
f) FO={e, Sc3, 3c2,6c,,, 6c~} S 4 

L T  a = {e, 8C3,3C2, 6S,,, 60"d} 
48 O h 0 x C 2 
60 I = {e, 12c5, 12c52, 20c3, 15c2} A 5 

120 I h I x C z 
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Table 2. Subgroup chains for nonabelian sym- 
metry groups. Normality ( > )  refers to the 
main group (not to the preceding subgroup). 
Commutator subgroups encircled 

N. Agmon 

Dihedral Cubic 

~C~ ~C3 

> C4>~) ~C~ 
=D4=C4 

Dst>D4DD2~Cz @~T~D2DC 2 

~>G>@>C2 DDsDC5 
~C~ 

D D3 D C s 

(b) All factor groups. Each is opposite the non-faithful irreducible representa- 
tion(s) with the corresponding kernel. The factor group with respect to the 
commutator subgroup (encircled) gives all one-dimensional irreducibles. The 
factor group(s) with respect to the minimal normal subgroup(s) give all non- 
faithful irreducible characters. For further discussion of these points see 
Appendix B. 

(c) The reduction of the subdued faithful (and some of the non-faithful) irreduc- 
ible characters on the maximal subgroups M c G. (Cf. Table X-14 in [9].) The 

(d) In Table 5, the classes are also denoted by the cycle structure. This helps in 
determining the fusion rules for classes of M into those of G. The correspondence 
is always of classes with the same cycle structure. 
After this preliminary discussion we are ready to demonstrate the derivation of 
the irreducible characters for the dihedral and cubic groups. Since the usage of 
Eq. (3) for eliminating the non-irreducibles is clear, we always use the MMR 
instead. Our demonstration is therefore also a proof of its validity for all point 
symmetry groups. 

Dihedral groups, D, (order 2n) 

All dihedral groups have the same structure, depending on whether n is odd or 
even, and hence there are two types of character tables (Table 4). 

k 1. Odd n. There are (n+3)/2 classes: c, is in the same class with c~ k [there are 
(n -1 ) /2  such classes], nc 2 elements form a class and, of course, the identity. 
The maximal subgroups are C, and C2 (there are actually n conjugate C2 
subgroups). C, is also the commutator subgroup. 

Since D , / C , - C 2  ( -deno tes  isomorphism) there are two linear irreducible 
characters (Appendix B). This conclusion is easily reached in the composition 
method. The classes c k and c~ k of C, fuse into the same class in /9 , .  When n is 
odd, the trivial (principal) representation A is the only real representation, 
assigning the same character to both classes (Rule (i)), hence we must take (A)c.. 



Ascending symmetry for irreducible characters 

Table  3. Character  tables for cyclic groups C.. e --- exp (2~ri/n), e* = exp (-2~ri/n)  

211 

c2 c3tl c3 Ca 
A | 1  1 A 1 1 A 

B 

B -  - 1  E E 

% c~ c 4 

1 1 

C 5 e 

A 1 

E2 (I 

C 6 e 

A 1 
B 1 

E2 l11 

El {11 

E* 

c~ c, 

1 1 A 
B 

E E2 E2* E* 

~* E 2.  E 2 ~ E2 

~2 E* E E 2.  

E 2 .  E E* E 2 
E1 

E~ 

c6 ~ c~ c~ c~ 

1 1 1 1 1 
- 1  1 - 1  1 - 1  
- e *  - e  1 - e *  - e  
--~ - -e*  1 --E --E* 

e - e *  - 1  - e  e* 

e*  - e  - 1  - e *  e 

3 
e c 4 C 2 c~ 

i 

1 1 1 1 
1 - 1  1 - 1  

e* f l  i - 1  - i  

e ~1 - i  - 1  i 

e c 8 c 4 c~ c 2 c~ c] c~ 

1 1 1 1 1 1 1 1 
1 - 1  1 - 1  1 - 1  1 - 1  

f l  i - 1  - i  1 i - 1  - i  

Ii - i  - 1  i 1 - i  -1  i 

I e i - e *  - 1  - e  - i  e* 
e* - i  - e  -1  - e *  i e 

~ l - e * - i  e - 1  e* i - e  
"~1 - e  i e* -1  e - i  - e *  

For C2 there are two possibilities, A or B, and the derivation of the linear 
characters is complete. 

For a two dimensional representation we can only take the sum of two conjugate 
representations of  C,. This is due both to the class fusion restriction, Rule (i), 
and to Clifford's theorem (Rule (v)). For each of these we can chose 2A, 2B or 
A +  B of  C2. The M M R  ensures that only the last combination gives an irreducible 
character (which therefore assumes the value 0 on the class ncz). Since there are 
(n - 1)/2 such combinations, we have obtained all (n + 3)/2 irreducible characters. 

2. Even n. There are n / 2 + 3  classes: The elements of  Cn are again conjugated 
in n/2-1  pairs (c ,  k with c~ k) but now both e = c~ and c2 = c~,/2 are self conjugate. 
The perpendicular  c2 rotations now form two classes: (n/2)c'2 and (n/2)c~. The 
maximal subgroups are C,  and D,/~,, where p is a prime divisor of  n. (There 
are actually p isomorphic but non-conjugate Dn/p's.) When n/2 is odd, 
D. = D./2x C 2, When n = 2 k D .  is a p-group. The commutator  subgroup is 
always C,,/2. 

Since D./C./2~ D2, there are four linear irreducibles, easily obtained from the 
character table of/92.  We therefore discuss the composition method only for the 
problematic case n = 2 k. In this ease there are two isomorphic non-conjugate 
maximal subgroups D'/2 and O ~ / 2 ,  corresponding to the two classes (n/2)c~ 
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Table  4. Character tables for dihedral groups. Notations explained in text 

N. Agmon 

D2 

A 
BI 

B2 
B3 

e c2 c~ c~ 

1 1 1 1 
1 - 1  1 - 1  
1 1 - 1  - 1  
1 - 1  - 1  1 

Z =  D 2 

D 2 /  D 2 ~  C I 

D~/ C~C~ 
D2/ C2~C~ 
D~/ C~C~ 

D 3 e 2c 3 3c 2 Z = C 1 

A1 [ 1 1 1 D 3 / D 3 ~ C  1 
:_2_~_1 . . . . .  1____--1___ D 3 / ~ -  C 2 

E [2 -1  0 " - - (E )c :~+B) -c2 - -  

D 4 e 2c 4 c 2 2c~ 2c~ Z =  C 2 

AI 1 1 1 1 1 (A)c4(A)o~(A)o, ~ D 4 / D 4 - C  ~ - 
A 2 1 1 1 - 1  - 1  (A)c4(B2)D~(B2)I~ D4/C4~C2 D , , / Q  ~ D  2 
B 1 1 - 1  1 1 -1  (B)c4(A)D~(B2)~I D 4 / D 2 ~ C  2 
B 2 I -1 i -I 1 (B)c4(B2)~(A)~ D4/D2~C2_ 
....................................................................................... 

E 2 0 - 2  0 0 (E)c~(B,+B3) ~ 

D 5 e 2c s 2c~ 5c 2 Z = C  1 

A 1 1 1 1 1 (A)c~(A)c 2 D J D  5 ~ C,] 
Ds/  c~ C2 A 2 1 1 1 - 1  (A)cs(B)c2 J 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

47r 
E 1 2 cos ~-- (E1)c , (A+B)c  2 

2~r 
E 2 2 cos -~- (E2)cs(A+B)c2 

2 ~ "  
2 2 cos - -  0 

5 
4~- 

2 2 cos - -  0 
5 

e 2c s 2c 4 2c 3 c 2 D 8 4c~ 4c~ 

A 1 1 1 1 
A 2 1 -1  -1  
B 1 1 1 - 1  
B 2 1 - 1  1 
E 2 2 0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

E~ 2 x/2 - 2  -x/2 - 2  0 0 
E 3 2 -x/2 - 2  x/2 - 2  0 0 

1 1 1 1 
1 1 1 1 

- 1  1 - 1  1 
- 1  1 - 1  1 

0 - 2  0 2 

z=c~ 

(A)cs(Al)o~(A1)o: ~ Ds/  Ds -C1"  ] ~ -] 
(A)cs(A2)oa(A2)oa I 
(B)cs(A1)D~(A2)D ~ Ds/D,~C2I'Y I ~ 
(B)cs(A2)Da(A,)D~ Ds/D4~C2.J  ~ J 
( E2)cs( B, + B2)04 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(E1)cs(E)D, 
(E3)cs(E)o4 

and (n/2)c~ of D ,  (e.g., the two classes (n/2)c~ and (n/2)c~ of  D'/z fuse into 
(n/2)c~ o f / 9 , ) .  From the character table of  C,  we can now choose either A or 
B. For each of these we can take either A 1 o r  A2 for either of  D'/2 and D"/2 (A 
or BE if  n = 4). Together we have eight combinations of  class functions [with 
~b (g )=+ l ] ,  of  which only four are generalized characters (and therefore 
irreducible). 

As discussed in Sect. 2, this problem arises because the groups under consideration 
are elementary. It can be resolved if we note that a c, operation would bring the 
symmetry axes of  D'/2 to coincide with those of  D"/2 [i.e. c,,{(n/2)c~}= 
{(n/2)c~}]. Therefore, if  we take the symmetric character A for C,, those for 
D'/2 and D~,/2 should both be symmetric or both antisymmetric. I f  we chose 
the antisymmetric character B for C,,  those for D'/2 and D"/2 should 
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be one symmetr ic  and the other antisymmetric.  We conclude that  there are 
four  linear irreducible characters cor responding  to (A)c.(A1)D,/2(A1)D,~/2, 

( A ) c . ( A 2 ) D , / 2 ( A 2 ) ~ ; / 2 ,  (B)c.(A1)D,/2(A2)D,. /2 and (B)c . (A2)D%(A1)r :~ /2 .  

The remaining n / 2 - 1  irreducible characters are 2-dimensional,  derived (as for 
the case o f  odd  n) f rom the complex conjugate pairs o f  irreducible representations 
o f  C,.  N o w  all i somorphic  D, /2  have the same decomposi t ion.  It would  be either 
A I + A 2  (for odd  n/2) ,  B I + B 2  (for even n / 2 )  or one o f  the 2-dimensional  
irreducible representations,  depending on the value o f  ~b for  the c, elements. In 
all cases we obtain ~b(c'~)= ~b(c~)= 0. We conclude that  all the class functions 
obtained are irreducible characters. The character  tables for  the dihedral  groups 
are therefore complete.  

Cubic groups (Table  5) 

1. The tetrahedral  group T - A 4  (order 12). The two maximal  subgroups are Ca 
(there are 4 conjugate C3's) and D2. Each  class o f  C3 fuses into a different class 
o f  T. All three c2 classes o f  D2 fuse into the single class 3c2 of  T. Let us start 
with the one-dimensional  class functions. 

Table 5. Character tables for the cubic groups. Notations explained in text 

(14) (1, 3) (1, 3) (2 2 ) 
T e 4c 3 4c 2 3 c 2 Z= C 1 

A 1 1 1 1 (A)q(A)rh'] 

{ I  e e* 1 } (E)q(2A)~JT/(~C 3 
E e* e 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T 3 0 0 -1 (E+A)c3(BI+B2+B3)o2 

(14) il, 3) (22) (4) (12, 2) 
O e 8c a 3c 2 6c 4 6c~ Z = C  1 

A l l  1 1 1 1 (A)T(AI)o, ] 0 / ( ~ C 2 ] 0 / D 2 ~ C 3  
A 2 1 1 1 -1 -1 (A)T(B1)D4 

J J E 2 -1 2 0 0 (E)T(A1+B1)D4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T 1 3 0 -1 1 - 1  (T)T(Eq-A2)D4 
T 2 3 0 -1 -1 1 (T)T(E+B2)D4 

(15) (5) (5) (12, 3) (1, 22 ) 
I e 12c 5 12c 2 20c 3 15c 2 Z= C, 

A 1 1 1 1 1 I / ( ~  C 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T 1 3 �89 �89 0 -1 (T)T(EI+A2)D5 
T 2 3 �89 �89 0 -1 (T)r(E2+A2)o5 
O 4 -1 -1 1 0 (T+A)T(EI+E2)Ds 
H 5 0 0 -1 1 (T+E)T(EI+E2+A1)Ds 
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v = 1. The only linear character of /92 assigning the same value to these three 
classes is A (rule (i)), which may be combined with any linear character of C3. 
Hence T has three linear characters. 

v = 2. There can be no 2-dimensional X ~ Irr (T),  since no combination, except 
2A, of two irreducible characters of /92  assigns the same value to the three c2 
elements. The combination (2A)o~ can be discarded for three different reasons: 

(a) We know that /92 is both the commutator subgroup and the only minimal 
normal subgroup of  T. Hence all non-linear irreducible characters must be faithful. 

(b) If  this combination would give an irreducible character, we would complete 
the character table of  T without using the other irreducible characters of /92,  in 
contradiction to Rule (iii). 

(c) Complete the class function by taking a combination of  any two linear 
characters of  C3. But since they were already used for the linear characters of 
T, the result is reducible. 

v = 3. The 3-dimensional class functions that need be considered are composed 
of (BI+ B2+ B3)D2. (The combination (3A)o2 contradicts the MMR and leads, 
as above, to a reducible character.) For C3 we can take any combination of three 
irreducibles, and the MMR now ensures that the only function which would be 
an irreducible character is (B1 + B2+ B3)o~(A+ E)c3, which contains each linear 
character of  C3 once. Alternatively, we could have rejected (3A)c~ as being 
non-faithful, and any combination of an odd number of the non-real linear 
characters of  C3 as leading to an irreducible character which is not real. This is 
in contrast to it being the last irreducible representation (hence its complex 
conjugate must equal to itself in order to belong to Irr (T)).  

We conclude that there is one 3-dimensional irreducible representation and the 
character table for T is complete. 

2. The octahedral group O - $ 4  (order 24). The maximal subgroups are T and 
9 4 (there are actually 3 conjugate D'4s). The two classes 4c3 and 4c 2 of T fuse 
into the class 8c3 of  O. The classes c2 and 2c~ of D4 fuse into the class 3c2 of O, 
while the class 2c~ of D4 is partial to 6c~ in O. 

v =  1. The only possible combination (Rule (i)) from T is (A)r.  This gives 
X(c2) = 1, with the result (Rules (i) and (ii)) of two possible combinations from 
D4:A1 and B1. Hence O has two linear characters. 

v = 2. Possible combinations (Rule (i)) from T are (2A)r  or (E ) r .  In both cases 
~b(c2) = 2, with the result (Rules (i) and (ii)) of  only one combination from/94: 
A1 + B1. The class function (2A)r(A1 + B1)D4 is now immediately rejected by the 
MMR, or because it is the sum of the two linear characters obtained in the 
previous step (Rule (iv)). 
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v = 3. The class functions that agree with Rule (i) may have either (A+ E)T or 
(T) r. We argue that (A + E ) r  would not correspond to an irreducible character 
for several reasons: 

(a) The intersection of the kernels of all three irreducibles obtained in the previous 
stages is exactly/92,  which is a minimal normal subgroup. Hence all additional 
X E Irr (O) must be faithful. 

(b) T ~ O, hence this contradicts Clifford's theorem (Rule (v)). 

(c) Any combination from D 4 with v = 3 would give ~b(c4)~ 0. Since we have 
obtained a linear character (A2) for O which assigns -1  to the element c4, we 
conclude that if there is a 3-dimensional irreducible character, there will be two 
such characters (one obtained by multiplying the other by A2). But then we would 
exhaust all X ~ Irr (O) without using (T)T, in contradiction to Rule (iii). 

(d) Finally, (A+E)T is also rejected by the MMR. 

We are left with (T)T, assigning ~b(c2)=-1. Therefore, by Rules (i) and (ii) we 
can have only (E +A2)D4 or (E + B2)o,, which completes the character table for 
the octahedral group. 

3. The icosahedral group ! - A 5  (order 120). The classes of  maximal subgroups 
are T, D5 and /93. From Table 2 we see that each subgroup of D3 is also a 
subgroup of  T. Hence the ME-cover  for ! does not include D3. 

v = 1. A5 is simple and hence has only one linear character, A. This can also be 
deduced by the composition method, since the two classes 4r 3 and 4c 2 of  T fuse 
into the single class 20c3 of L 

u = 2. ! has no irreducible character of this dimension, since T has no faithful 
character with v = 2. 

v = 3 .  For the same reason we can have only (T)T. Note that the possible (by 
Rules (i) and (ii))class functions (A+ E)Tc(3AOo5 and (3A)T(3A1)o5 violate the 
MMR for both maximal subgroups. Also (3A)T(3A1)D~ is clearly reducible. (T)T 
implies ~b(c2) = -1 ,  so we can choose from D5 only El+A2, E2+A2 or Al+2A2.  
The last combination is discarded on the basis of the MMR (or because it is 
non-faithful). We are left with two 3-dimensional irreducible characters of L 

v -- 4. The only faithful combination from T is (T  + A)T. Note, again, that a class 
function such as (2E)T(4A1)o~ would be rejected also by the MMR. Now, 
(T+A)T implies ~b(c2)=0. Of all possible combinations from /95, the MMR 
excludes all but (E~+ E2)D~. (Some of the other combinations could again be 
discarded for other reasons: Being non-faithful, N-linear combinations of other 
irreducibles, etc.). We are therefore left with only one 4-dimensional irreducible 
character. 

v = 5. This will be the last irreducible character for L The only combination from 
T to give an irreducible character is ( T+ E)T: We have not used (E)T yet (Rule 
(iii)) and (2E +A)T is rejected both by the MMR and for its non-faithfulness. 
(T+E)r gives ~b(c2)= 1. Of the combinations that can be chosen (Rule (ii)) 
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from/)5, only (El + E2+ A1)D5 agrees with the MMR. The character table of the 
icosahedral group is now complete. 

5. Double groups 

Obtaining the characters for the two-valued representations of Bethe's double 
groups (see Sect. 9-7 in [4]) is particularly easy in the present method. The reason 
is that these characters are orthogonal to those of the single-valued representations 
(obtained in Sect. 4), and that a subdued two-valued character decomposes into 
two-valued characters of the subgroup. Hence one only needs to consider the 
two-valued irreducible representations of the maximal subgroups. 

In the present method, one first constructs the character tables for the cyclic 
' C~ C2,. All their double-valued double-groups C,.  This is easily done since ' 

representations are therefore one-dimensional. Next, one uses these to construct 
the characters of the two-valued irreducible representations of the double-dihedral 
and double-cubic groups. 

To demonstrate this procedure, the reader is referred to Table 9-11 of [4] (the 
characters of c4 and c a in the character table for D~ should be +v/2). 

(a) D~. The maximal subgroups of D~ are C~ and C~. The first has 3 one- 
dimensional two-valued irreducible representations, denoted by A' and E'. The 
second maximal subgroup, C~, has two such complex-conjugate representations, 
denoted jointly by E'. From these one can compose (E')c~(2A')c; and 
(E')c~(E')c~, which are the two 2-dimensional irreducible representations of D~ 
denoted by E] and EL, respectively. Note that (E')c3(2A')c~ is not rejected by 
the MMR, since it is actually a shorthand notation for two linear characters. 

(b) T'. The maximal subgroups are C~ and D~. The latter has only one two-valued 
representation, E'. It is easily seen that T' can have three different 2-dimensional 
irreducible characters, obtained by composing (E')o; with the sum of any pair 
out of the three two-valued irreducible characters of C~. Thus (E')T, and (G')T, 
are obtained. 

(c) O'. The maximal subgroups are T' and D~,. Their two-valued irreducible 
characters can be composed as (E')T,(E'I)o~, (E')T,(E~)o:~ and (G')T,(E~ + E'2)o~, 
to yield the two-valued irreducible representations of O', denoted by E~, EL and 
G', respectively. The combination (2E')T,(E~ + E'2)D~ is rejected by the MMR. 

6. Conclusion 

We have introduced the new "Ascending Symmetry" or "Composition" method 
for determining irreducible characters of (nonabelian) finite groups. It is a 
consequence of Brauer's theorem on generalized characters that the method is 
guaranteed to work for all non-elementary groups. Whether this is so when the 
group is (nonabelian but) elementary is not completely clear. We have also 
introduced a characterization of irreducible characters by the "Maximum Mixing 
Rule", which has an interesting physical interpretation as ensuring maximal 
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e n t r o p y  i n c r e a s e  b y  e x t e r n a l  p e r t u r b a t i o n s .  T h e  ru l e  h a s  t h e r e f o r e  b e e n  c h e c k e d  

f o r  a l l  t h e  p o i n t  s y m m e t r y  g r o u p s  o f  m a t h e m a t i c a l  p h y s i c s ,  w h o s e  c h a r a c t e r  t a b l e s  

we  h a v e  c o n s t r u c t e d  b y  t h i s  n e w  m e t h o d ,  as  we l l  as  f o r  t h e  c ry s t a l  d o u b l e - g r o u p s .  

I t  m a y  b e  i n t e r e s t i n g  to  k n o w  to  w h a t  e x t e n t  i t  h o l d s  f o r  a g e n e r a l  f in i t e  g r o u p .  

F i n a l l y ,  i t  is u n c l e a r  w h e t h e r  t h e  c o m p o s i t i o n  m e t h o d  c o u l d  h a v e  a p r a c t i c a l  

a p p l i c a t i o n  in  c o m p u t a t i o n a l  g r o u p  t h e o r y  [16] ,  f o r  c a l c u l a t i n g  c h a r a c t e r  t a b l e s  

o f  l a r g e  f in i t e  g r o u p s :  F o r  m e d i u m - s i z e  g r o u p s  o t h e r  m e t h o d s  m a y  b e  m o r e  

ef f ic ient ,  w h i l e  f o r  l a r g e  g r o u p s  t h e  m a x i m a l  s u b - g r o u p s  a n d  t h e i r  f u s i o n  ru l e s  

a re  u n k n o w n .  
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Appendix A: Definitions of group theoretic notions 

--Ambivalent class: conjugacy class which equals to its inverse. 
---Centralizer (of an element g c G): all x c G that commute with g. 
--Class function: a function assigning a complex number to each conjugacy class. 
--Commutator subgroup: generated by all elements of the form xyx-ly -1, where x, y ~ G. 
--Conjugate characters: if H <  G, ~b is a character of H, h ~ H and g c G, then ~g(h) = tp(ghg -1) is 
a character conjugate to ~b in G. 
--Coset: a right (left) coset of subgroup H in G is the set Hg(gH), g E G. 
--Elementary subgroup: a direct product of a p-group and a cyclic group. 
--Factor group: if H <a G the factor group G/ H is the set of all left (or right) cosets of H in G with 
multiplication by representatives: ( xH)(gH) = xgH. 
--Faithful representation: an isomorphism of G onto a group of matrices. Its kernel is the identity. 
--Fusion of classes: unison of all classes of a subgroup H that are contained in a class of G. 
--Generalized character: difference of characters. It is a Z-linear combination of irreducible characters 
(i.e., the coefficients are integers, possibly negative). 
--Kernel of a character X: all g e  G so that x(g) =x(e) .  
--Maximal subgroup H _ G: there is no subgroup K c G so that H c K. 
--Normal subgroup: H <  G if it is self-conjugate, i.e. H = gHg -1 for all g c G. 
--p-group: all its elements are of orders which are powers of the prime p. 
--Proper subgroup: a subgroup H_~ G is "proper" if it differs from G or {e}. 
--Simple group: has no normal subgroups. 
--Simply reducible: G is simply reducible on a subgroup H if all ~ c Irr (H) appear at most once 
in XH, X~ Irr (G). 
--Subclass: the subclass of,g ~ G with respect to a subgroup H ~ G are all elements hgh -1, h ~ H. 
--Subduced character: a character XH of a subgroup H ~_ G is subduced from G if it is a restriction 
of a character X of G to the classes of H. 

Appendix B: Non-faithful characters and factor groups 

we briefly review the procedure of obtaining the non-faithful irreducible characters from those of 
factor groups. This is based on the homomorphism theorem [17]: On the one hand the kernel of 
every homomorphism (i.e., the set of elements mapped to the identity) is a normal subgroup. On the 
other hand, every H < G defines a "canonical" homomorphism from G to the factor group G/H 
whose kernel is H, by g-->gH. Every homomorph of G with kernel H is thus isomorphic to G/H. 
Since a representation is a homomorphism (onto a group of matrices), and homomorphism is transitive, 
one concludes that if X e Irr (G/H)  then x(gH) e Irr (G). For H ~ {e}l X is non-faithful. 
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To obtain all non-faithful irreducible representations one needs to consider only the minimal normal 
subgroups. This follows from the theorem stating [17] that if K and H are both normal subgroups 
of G, K c H c G, then H / K  ..~ G / K  and 

G/  H ~ ( G /  K ) / ( H /  K )  (B1) 

This implies that all irreducible representations of G / H  are (nonfaithful) irreducible representations 
of G/  K. 

Finally, all linear irreducible characters can be found from the factor group with respect to the 
commutator subgroup He, which is [17] the (unique) normal subgroup containing all elements 
alaz" �9 �9 a,a~la2 ~ �9 �9 �9 a~ ~ for all ai~ G, n>_2. Alternatively, if ~i is a class in G and ~ ,  the class 
of inverses, Hc is generated by all cr This follows from the theorem [17] that if H-~ G then G / H  
is abelian (hence all its characters are linear) if and only if H=/arc. (Also H a  H c ~ H . . ~ G  ). In 
particular, the number of one-dimensional irreducible representations equals IGI/IHcI. 

As an example consider D 8 and C a-~ D 8. Ca is the commutator subgroup of Ds. To see this, take 
all elements of the form ~r (note that D 8 is ambivalent, qg~ = cCe): {2c4} 2= {e, c2}, {2cs} 2= {e, 2c4}, 
etc. Going over all classes of Ds one obtains exactly all elements of C 4. 

Consider next the factor group 198/(24. It contains 4 distinct cosets: eC4 = {e, 2c4, c2}, c8C4 --- {2 Ca, 2c~}, 
c2C4 --- {4c~} and c~ C4 = {4c~}. (Since Ds/C4 is abelian, each coset is made of whole classes of Ds.) 
198/(74 must be isomorphic to C4 or D2. eC,, is its identity element. Pick a representative from the 
other three cosets. Their square belongs to eC4, hence 198/C4 ~ D2. 

We construct the linear characters of D8 from the character table of D 2 as follows: Take the column 
of the identity in D 2 and put it under the classes e, 2c 4 and c 2 of Ds; take the column of the class 
c~ in D2 and use it for the classes 2Cs and 2c~ of Ds; finally, put the columns of c2 and c~ in D2 
under 4c~ and 4c~ of Ds, respectively. 
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